
Prof. Dr. Frank Cichos

WS 2022/23

Experimental Physics 3 - Em-Waves,Optics, Quantum mechanics

Lecture 10



Multiple Wave Interference - Constant Intensity

(c) Saleh/Teich: Principles of Photonics



Multiple Wave Interference - Decaying Intensity

(c) Saleh/Teich: Principles of Photonics



Fabry Perot Interferometer

Possible phase jumps under reflection influence the phase
difference only for the transitions A0 ! A1 and A1 ! A2.

For A1⊥ we get
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For A1∥ is
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where the sign depends on the condition a\aB (+sign) or
a[ aB (−sign).

The total amplitude of the reflected wave is the sum of all
reflected partial waves where the phases have to be taken
into account.
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If the cross section of the plane parallel plate is suffi-
ciently large or the incidence angle a sufficiently small,
many partial waves can overlap and we can set p ! ∞.
The limit p ! ∞ of the geometrical series (10.22) is
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The intensity of the reflected wave is then

IR ¼ ce0AA' ¼ I0 " R " 2# 2 cosDu
1þR2 # 2R cosDu

:

This can be written with 1# cos x ¼ 2sin2 x=2ð Þ as

IR ¼ I0 "
4R " sin2ðDu=2Þ
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In a similar way one finds for the intensity of the trans-
mitted wave

IT ¼ I0 "
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: ð10:25Þ

From (10.24) and (10.25) we see that IR þ IT ¼ I0,
because we have neglected any absorption.

With the abbreviation

F ¼ 4R

ð1# RÞ2

We obtain from (10.24) and (10.25) the Airy Formulas
for the reflected and transmitted intensities
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Since both intensities depend on the phase difference ∆u
between consecutive partial waves it is of interest to find
experimental ways to alter Du. There are two ways to realize
this:

(a) By tuning the wavelength k for a fixed path difference
Ds ¼ k=2pð ÞDu

(b) By variation of ∆s for a fixed wavelength k. This can be
realized with the interferometer of Fig. 10.21b which
consists of two plates each with one reflecting and one
anti-reflecting surface layer. The two reflecting surfaces
oppose each other and are carefully aligned to form a
parallel air space between them.

For the case (a) a solid plane parallel plate with reflecting
surfaces can be used (Fig. 10.21a). The incident light is
either monochromatic and the wavelength k is tuned, or a
light source emitting a spectral continuum that contains all
wavelengths between k1 and k2 is used. The interferometer
then filters those wavelengths km = ∆s/m (m = 1; 2; 3; …)
that are fully transmitted. Using (10.8) we get

km ¼ Ds=m ¼ 2d=m "
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
:

If the incidentmonochromatic light is divergent a system of
bright rings appears for the transmitted light, where all angles
a give maximum transmission for which (10.8) is fulfilled.
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Fig. 10.21 Fabry-Perot interferometer. a) Etalon with reflecting
coatings on both sides, b) two plates with reflecting surfaces on one
side and anti-reflecting coatings on the other sides
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Fabry Perot Interferometer
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Fabry Perot Interferometer



Newton Rings



2.3 Diffraction



2.3.1 Huygens Principle
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2.3.2 Single Slit



Single Slit Diffraction



Single Slit Diffraction



Single Slit Diffraction

circular aperture



Diffraction Grating



Circular Aperture



Optical Resolution


