Experimental Physics 3 - Em-Waves, Optics, Quantum mechanics

Lecture 14

Prof. Dr. Frank Cichos WS 2022/23

Radiation Pressure

Nichols-Hull experimental apparatus 1900-1903 Wilder Physical Laboratory, Darthmouth College

A PRELIMINARY COMMUNICATION ON THE PRESSURE OF HEAT AND LIGHT RADIATION.

BY E. F. NICHOLS AND G. F. HULL.

E. F. Nichols and G. F. Hull Phys. Rev. (Series I) **13**, 307 – Published 1 November 1901

Radiation Pressure

tails of a comet Tails get longer the closer a comet gets to the Sun. Sun Orbit of comet

Comet Neowise photographed by B. Cichos 2020

Radiation Pressure

Trapping colloidal particles

Trapping & Cooling of atoms

Laser

Fountain Atomic Clock

Speed of Light Measurement

Astronomical method (Ole Rømer)

Cogwhell (Fizeau)

Speed of Light Measurement

Rotating Mirror (Foucault)

Phase Method

Autnor	Method	given in km/s
Ole Rømer	astronomical	finite, no value given
Huygens	Analysis of Romers measurements	$220-300 \times 10^3$
A. Fizeau	cogwheel method	315 000
L. Foucault	rotating mirror method	298 000
A. Michelson	improved rotating mirror technique	299 910
A. Michelson	interferometer	299 791
L. Essen	Microwave cavity	299 792,5
K. Evenson	measurement of wavelength and frequency of a laser transition	299 792,45
-	todays defined fixed value	299 792,458

Electric fields in Materials

Electric fields in Materials

Negative Refraction

Fig. 1. Refraction: Diagrams of (a) positive refraction and (b) negative refraction; and calculated images of a metal rod (c) in a glass filled with regular water (n = 1.3), and (d) in a glass filled with "negative-index water" (n = -1.3). In parts a and b, solid lines with arrows indicate the direction of the energy flows, broken lines with arrows show the direction of the wave vectors. (Parts c and d from G. Dolling et al., Photorealistic images of objects in effective negative-index materials, Opt. Express, 14:1842–1849, 2006)

Effect of Materials

$$E(z) = \underbrace{E_0 e^{i(\omega t - kz)}}_{E_e} - \underbrace{ik(n-1)\Delta E_0 e^{i(\omega t - kz)}}_{E_{\text{medium}}}$$

Dispersion and Absorption

ω

Dispersion and Absorption

Dispersion and Absorption -

Single Molecule Absorption Line

excitation spectrum single pentacene molecule in p-terphenyl

T=1.8 K

Absorption Spectra

Wavelength (nm)