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Speed of Light Measurement
Note The solar wind (protons and electrons) causes inho-
mogeneous electric and magnetic fields and divide the
comet’s tail sometimes in more than two components.

7.7 Measurement of the Speed of Light

According to our present knowledge the speed of light is in
vacuum independent of its frequency x. That means, that
phase- and group-velocity in vacuum are always equal; there
is no dispersion! (see Vol. 1, Sect. 11.9.7).

vPh ¼ vG ¼ x
k
¼ c: ð7:28Þ

The speed of light can, therefore, be measured at any
frequency. Up to now most of the measurements were done
with visible light. That is the reason for naming c the speed
of light, although the value is valid for all electromagnetic
waves of the complete spectrum.

7.7.1 The Astronomical Method of Ole Roemer

The oldest method to determine the speed of light is based
on astronomical observations. Many astronomers have
measured the orbital period of the moons of Jupiter with
high precision, because the time of darkening—the moons
are concealed by Jupiter—and the time of reappearance
could be observed very well. Ole Roemer (1644–1710)
found out, that the available tables reproduce the period of
revolution well, if the earth is near to Jupiter (position 1 in
Fig. 7.14)—Jupiter in opposition to the sun—but the
observed darkenings were 22 min later, if Jupiter where in
conjunction (position 2 of the earth).

Contrary to other scholars of his time, Roemer traced back
the results of the observations to the different times the light

needed between Jupiter and earth for the two positions 1 and 2
in Fig. 7.15 with the path difference Ds ¼ s2 $ s1. Roemer
could show, that the speed of light has a finite amount and is
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Fig. 7.13 Deflection of the comet tail by the radiation pressure from
the sun

Fig. 7.14 Photograph of the comet Mrkos 1957d where the tail is split
(with kind permission of the Hale observatory)
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Fig. 7.15 Determination of the speed of light by the astronomical
method of Ole Roemer. The drawing is not to scale
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Astronomical method (Ole Rømer)

not infinitely large, contrary to the opinion of Descartes. For
the exact determination of the path difference, one has to take
into account, that Jupiter has moved by the arc length Dsj
during the timeDt ¼ t2 " t1. The diameterD of the earth orbit
has been well known D # 3 $ 1011mð Þ. So, Roemer could
calculate the speed of light from the difference of his mea-
surements and the data in the available tables.

But Roemer did not publish a definite value of c, maybe
because he believed his measurements to be not exact enough
[4]. Later Huygens published a value of c between 220,000
and 300,000 km/s [5], a value, that includes the true value.

7.7.2 Cogwheel Method by Fizeau

While Roemer used a very large distance (3 $ 1011 m)
Armand Fizeau (1819–1896) had improved the time mea-
surements so much that he could use a distance on earth to
determine the speed of light. He used an experimental setup
according to Fig. 7.16. An astronomical telescope colli-
mated the light coming from an extended source LQ to a
parallel beam that was reflected by the mirror S at a distance
d. A part of the reflected light was split by a beam splitter BS
and the transmitted light reached the observer.

A fast rotating cogwheel CW in the focal plane of the lens
L1 periodically interrupts the-light beam, so light pulses of
duration T1 and frequency m ¼ 1=DT ¼ 1= 2T1ð Þ are emitted
if tooth and gap of the cogwheel have the same width.

If the cogwheel rotates with such an angular velocity x
that the light pulse transmitted by the gap n returns back at
the next gap (n + 1) the observer sees light.,

At a faster rotation of the cogwheel the reflected beam
meets a tooth and one observes darkness. At twice the
rotational velocity, 2x, the reflected light pulse meets again
a gap n + 2, and so on.

Assume the cogwheel has N teeth and rotates with x, then
the time between two successive gaps is

DT ¼ 2p
x

1
N
;

The speed of light is then calculated as

c ¼ 2d
DT

¼ d ' N ' x
p

¼ 2dN ' f

where f = x/2p is the rotation frequency.
Fizeau used a distance of d = 8.6 km between the sum-

mits of two mountains. His cogwheel had N = 720 teeth and
rotated with the frequency f = 25.2 Hz. The light was
interrupted at the frequency v = Nf = 720 $ 25.2 Hz. His
result was c = 315,000 km/s. The difference of 5% to the
accepted value today results mainly from errors in deter-
mining the rotation frequency [6].

7.7.3 The Rotating Mirror of Foucault

A much higher accuracy was achieved by Bernard Leon
Foucault in 1850 with his method of the rotating mirror
(Fig. 7.17). A lens L focusses the light source onto the
aperture B and after a distance L the light is reflected by a
rotating plane mirror M1 onto a fixed concave mirror M2.
Without rotation of M1 the light reflected by M2 would hit the
aperture B again. When M1 rotates with the frequency x the
reflected light produces on a photographic plate an image of
the slit S which is shifted against the slit S by the distance Dx.

The mirror M1 with a rotation period T ¼ 2p=x rotates
during the time

DT ¼ 2d
c

¼ T ' a
2p

¼ a
x
: ðaÞ

by the angle a = 2d ' x/c. The distance Dx is then

Dx ¼ L ' tan 2a # 2L ' a: ðbÞ

The velocity of light is now obtained from (a) and (b) as

c ¼ 2d ' x=a ¼ 4d ' x ' L=Dx ðcÞ

The measurement of the speed of light c by this method is
reduced to the measurement of the distances d, L and Dx and
the rotation frequency x.
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Fig. 7.16 Measurement of the light velocity with the cog-wheel
method of Fizeau
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Fig. 7.17 Principle of the rotating mirror method of Foucault
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Rotating Mirror (Foucault)

Repeating Foucault’s experiment today, we use a laser as
the light source that can be much better collimated. The
rotation frequency of the plane mirror is driven by an electric
motor and can be determined easily and very accurately.
Therefore much smaller distances d are sufficient to reach an
acceptable accuracy. The experiment can then even be used
as demonstration in the lecture hall [7].

7.7.4 Phase Method

Instead of a cogwheel as in Fizeau’s experiment today
optical modulators are available to interrupt the light at much
higher frequencies f (Fig. 7.18). With a He–Ne-laser that
produces a collimated parallel beam of light which passes
through a Pockels cell. A Pockels cell is an optical modu-
lator that rotates the polarization plane following the high
frequency of an applied high voltage. Together with a
polarizer it acts as an intensity modulator

The transmitted intensity It behind the polarizer P is
modulated at the frequency f according to

It ¼
1
2
I0½1þ cos2ð2pftÞ& ðdÞ

Part of the transmitted beam is split by the beam splitter
BS onto the fast photo detector PD1. After reflection at a
retroreflector the other part of the light is imaged onto the
photo detector PD2. The phase shift

Du ¼ DT ' 2pf ¼ s2(s1ð Þ ' 2pf=c ðeÞ

between the two modulated laser beams is measured and
yields the speed c = (Ds ' 2pf/Du of light.

Example

f ¼ 107Hz;Ds ¼ 3m, ) Du ¼ 2pf ' DT ¼
2pf ' 2d=c ) 72*. The phase u can be measured to
0.1°. Therefore the result is accurate within ±0.14%.

7.7.5 Determination of c by Measurements
of Frequency and Wavelength

From the relation
c ¼ m ' k

for electromagnetic waves the velocity of light c can be
determined, if both the wavelength k and the frequency m can
be measured simultaneously. The wavelength k can be mea-
sured with high accuracy using modern interferometric tech-
niques [8]. Optical frequencies can bemeasured only recently,
since techniques for division of frequencies and the frequency
comb have been developed [9]. The most accurate measured
value of the speed of light is obtained by a weighted average
of several measurements. The today accepted value is

c ¼ 2; 99792458+ 108m=s:

This value is now used to define the unit of length . The
new definition of the meter is:

1 m is the length, that is travelled by light in vacuum
within 1/299792458 s. The speed of light is no longer
a quantity that can change by new measurements but
has the fixed defined value (see Vol. 1, Sect. 1.6.1).

k ¼ c=m

With this definition only the frequency has to be mea-
sured. This is nowadays possible with a much higher accu-
racy than that of wavelength measurements [10].

Table 7.1 lists some historical measurements of the speed
of light and their uncertainties.
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Fig. 7.18 Measuring the velocity with the phase method. P =
polarizer, BS = beamsplitter

Table 7.1 Historical measurements of the speed of light

Year Author Method Measured value
given in km/s

1677 Ole Rømer astronomical finite, no value
given

1678 Huygens Analysis of Romers
measurements

220–300 + 103

1849 A. Fizeau cogwheel method 315 000

1862 L. Foucault rotating mirror
method

298 000

1879 A. Michelson improved rotating
mirror technique

299 910

1926 A. Michelson interferometer 299 791

1950 L. Essen Microwave cavity 299 792,5

1973 K. Evenson measurement of
wavelength and
frequency of a laser
transition

299 792,45

seit 1983 – todays defined fixed
value

299 792,458
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given
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Effect of Materials

induced emission is delayed against that of the exciting wave
(see Vol. 1, Sect. 11.5).

At the observation point P(z) behind the medium the
primary and secondary waves superimpose and form the
total field amplitude

E ¼ Ee þ
X

k

Ek: ð8:2Þ

where the second term represents the sum of the secondary
waves emitted by all atoms in the plane z1 inside the
medium.

Because of the phase delay of the secondary waves the
total wave arrives at P(z) with a time delay, i.e. it arrives later
than without the presence of the medium. Its velocity inside
the medium is therefore smaller than in vacuum (Fig. 8.2).

Wewill at first describe this fact by the broad brush quantity
of the refractive index n, before we will derive the relation
between n and the atomic characteristics of the medium.

8.1.1 Macroscopic Description

In vacuum the wave would need the time t ¼ Dz=c0, to
traverse the distance Dz, while inside the medium it takes the
time tm = Dz/c = nDz/c0, i.e. it needs the additional time

Dt ¼ ðn% 1Þ & Dz=c0:

Behind the medium the wave at the point P(z) is then
described by

EðzÞ ¼ E0eix t%ðn%1ÞDz=c%z=c½ (

¼ E0eixðt%z=cÞ & e%ixðn%1ÞDz=c:
ð8:3Þ

The first factor in (8.3) gives the unperturbed wave which
would occur in the absence of the medium.

The influence of the medium is described by the second
factor

e%iDu with Du ¼ xðn% 1ÞDz=c ¼ 2pðn% 1ÞDz
k

If the phase shift Du is sufficiently small (this is the case
for gaseous media with n% 1 ) 1, but is generally not valid
for solid media), we can apply the approximation

e%iu * 1% iu

This gives with (8.3) the superposition (8.2) in the sim-
plified form

ð8:4Þ

where the influence of the secondary waves onto the delay of
the total wave is described globally be the refractive index
n and the thickness Dz of the medium.

8.1.2 Microscopic Model

The second term Emed in (8.4) can be described by a
microscopic but still classical theory. We characterize each
atomic electron that is induced by the electromagnetic wave
E ¼ E0 & eiðxt%kzÞ to forced oscillations due to the force
F = −e & E by the classical model of the damped harmonic
oscillator (see Vol. 1, Sect. 11.5).

The oscillation forced by a wave that is linear polarized in
x-direction, is described by the equation of motion

m€xþ b _xþDx ¼ %eE0eiðxt%kzÞ ð8:5Þ

This gives with the abbreviations x2
0 ¼ D=m, c = b/m the

oscillation amplitude of the atomic electrons (see 6.43)

x0 ¼ % eE0=m
ðx2

0 % x2Þþ icx
: ð8:6aÞ
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Fig. 8.2 Vivid schematic representation of the delay of a wave during
its passage through a dielectric medium. The incident wave is
superimposed by secondary waves with a phase delay, emitted by the
atoms in the layer of the medium induced to oscillations by the incident
wave. The thickness of these layers corresponds to an atomic layer with
Dz * 0.4 nm
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Dispersion and AbsorptionEquation (8.12a) for the refractive index anticipated that
all damped oscillators had the same resonant frequency x0

and the same damping constant c. In order to apply this
classical model to real atoms we have to take into account
the following facts:

• The atoms in an absorbing medium have many energy
states Ek and can absorb on all frequencies that cor-
respond to transitions between these states, because
every transition between two different energy states
causes absorption or emission at the frequency xk

DE ¼ Ek " E0 ¼ !hxk;

where !h ¼ h=2p is the reduced Planck constant (see Vol. 3,
Sect. 8.3.1).

• Because an atom with one valence electron can absorb
at different frequencies, the probability Pik that it
absorbs at a definite frequency xik is smaller than the
total probability P = RPk.

For a single absorbing transition the atom has only the
fraction (fk < 1) of the absorbency of a classical oscillator.
The number fk < 1 is called oscillator-strength. It gives the
fraction of the absorption probability of a classical oscillator
that corresponds to the absorbency of the selected atomic
transition. Summing over all possible transitions of the atom
the total absorption probability must be that of the classical
oscillator. This is equivalent to the condition

X

k

fk ¼ 1 ð8:22Þ

Sum rule of Thomas, Reiche and Kuhn [1]. The same
considerations for the absorption apply for the emission of
radiation.

The different excited atoms can absorb energy from the
incident wave independently from each other. The total
absorption is then the sum of all contributions from the
different atoms. The refractive index becomes

n ¼ 1þ e2

2e0me

X

k

Nkfk
ðx2

0k " x2Þþ ickx
ð8:23Þ

where Nk is the number of atoms per m3 with the absorption
frequency xk. Absorption coefficient a(x) and refractive
index nr(x) have therefore for media with many absorption
frequencies a more complex dependence on the frequency x
(Fig. 8.6) as is shown for the single absorption line in
Fig. 8.5. In Fig. 8.7 the refractive index nr(x) and the
absorption coefficient aðxÞ are illustrated in the vicinity of
the two yellow sodium D-lines.

Since in media with dispersion the speed of light vphðxÞ
depends on the frequency x, phase- and group-velocities
differ (see Vol. 1 Sect. 11.9.7). Because vph ¼ x=k we
obtain for the group velocity
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Fig. 8.5 Absorption coefficient a(x) = 2k0 & j(x) around an absorp-
tion line at x = x0
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Fig. 8.6 Schematic representation of j(x) and nr(x) over a frequency
range which includes several absorption frequencies xi
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Fig. 8.7 Illustration of dispersion and absorption in the vicinity of the
two yellow absorption lines of sodium atoms at k1 = 589.0 nm and
k2 = 589.6 nm (without taking account of the hyperfine structure)
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Single Molecule Absorption Line
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