Experimental Physics 3 - Em-Waves,Optics, Quantum mechanics

Lecture 28

Some dates in January and February

Mo	Tu	We	Th	Fr	Sa	Su
						1
2	3	4	5	6	7	8
9	10	11	12 Submission sheet 11	13	14	15
16	17	18	19 Submission mock exam	20	21	22
23	24	25	26 Submission sheet 12	27	28	29
30	\|31 Last Tuesday seminar	1	2 Last Thursday seminar Last lecture	3		

Exam: February 20, 2023, 9 am - 12 pm, 1 (one) DIN A4 page lettered Re-exam: March 27, 2023, 9 am-12 pm

Recap - the potential well

Recap - infinite potential well

Recap - infinite potential well

- No probability outside well
- $E_{n} \propto n^{2}$
- $E_{n} \propto a^{-2}$
- $E_{1}>0$

Recap - finite potential well

Recap - finite potential well

Finite $|\psi(x)|^{2}$

- Probability density decays exponentially inside potential wall
- Increased position uncertainty Δx
- Reduced momentum uncertainty Δp_{x}
- Thus, reduced energy E_{n}

Recap - the harmonic oscillator

Recap - harmonic oscillator

Recap - infinite potential well


```
\(H_{n}=\pi\left(n+\frac{1}{2}\right)\)
- \(E_{n} \propto n\)
- \(E_{0}=\frac{1}{2} \hbar \omega\)
```


The correspondence principle

The correspondence principle

1st Bohr postulate (phase-integral condition):
Electrons propagate at particular orbits, there they do not emit energy

$$
\oint p \mathrm{~d} q=n h \longleftrightarrow \mu v r_{n}=n \hbar \longleftrightarrow 2 \pi r_{n}=n h /(\mu v)
$$

2nd Bohr postulate (frequency condition): An atom can only change its energy through transition from one stationary state into another stationary state by absorption or emission of a photon $h \nu_{i k}=\left|E_{i}-E_{k}\right|$

3rd Bohr postulate (correspondence principle): The 1st and 2nd postulate have to correspond to the laws of classical physics for great n and big r_{n}

The correspondence principle - Bohr's 3rd postulate

- Example: harmonic oscillator
- For $n=1$ qm. probability density contradicts classical probability
- For great n both approaches merge

The correspondence principle - Heisenberg's refined version

- Mean square deviation of eigenvalue

$$
\begin{aligned}
\left\langle A^{2}\right\rangle-\langle A\rangle^{2} & =\int \psi^{*} \hat{A}^{2} \psi \mathrm{~d} \tau-\left(\int \psi^{*} \hat{A}^{2} \psi \mathrm{~d} \tau\right)^{2} \\
& =\int \psi^{*} \hat{A} \cdot \hat{A} \psi \mathrm{~d} \tau-A^{2}\left(\int \psi^{*} \psi \mathrm{~d} \tau\right)^{2} \\
& =A^{2} \int \psi^{*} \psi \mathrm{~d} \tau-A^{2}\left(\int \psi^{*} \psi \mathrm{~d} \tau\right)^{2} \\
& =0
\end{aligned}
$$

- If ψ is eigenfunction of the operator \hat{A}, then $\left\langle\Delta A^{2}\right\rangle=\left\langle(A-\langle A\rangle)^{2}\right\rangle=0$ and the system is a state in that A is constant over time

The correspondence principle - Heisenberg's refined version

Examples:

- Position operator $\hat{r}=r$
- Momentum operator $\hat{p}=-i \hbar \nabla$
- Kinetic energy op. $\frac{\hat{p}}{2 m}=-\frac{\hbar^{2}}{2 m} \Delta$
- Potential energy op. $\hat{E}_{\text {pot }}=V$
. Energy operator $\hat{H}=-\frac{\hbar^{2}}{2 m}+V$
- Angular momentum op. $\hat{L}=\hat{r} \times \hat{p}=-i \hbar \hat{r} \times \nabla$

Examples:

- $\hat{H} \psi=E \psi$
. $\langle p\rangle=-i \hbar \int \psi^{*} \nabla \psi \mathrm{~d} \tau$
- The definitions for $\hat{r}=r$ and $\hat{p}=-i \hbar \nabla$ are only valid in position representation $\psi=\psi(r)$
- In momentum representation $\phi=\phi(p)$ the operators became

$$
\hat{r}_{p}=i \hbar \nabla_{p} \text { and } \hat{p}_{p}=p
$$

A particle in a specially symmetric potential

A particle in a specially symmetric potential - spherical harmonics

$$
Y_{l}^{m}=Y_{0}^{0}
$$

A particle in a specially symmetric potential - spherical harmonics

$$
Y_{l}^{m}=Y_{1}^{-1}, Y_{1}^{0} \text { and } Y_{1}^{1}
$$

A particle in a specially symmetric potential - spherical harmonics

A particle in a specially symmetric potential - radial function

$$
R_{n, l}=R_{1,0}
$$

A particle in a specially symmetric potential - radial function
$R_{n, l}=R_{2,0}$ and $R_{2,1}$

A particle in a specially symmetric potential - radial function
$R_{n, l}=R_{3,0}, R_{3,1}$ and $R_{3,2}$

A particle in a specially symmetric potential - radial function

