Experimental Physics 3 - Em-Waves,Optics, Quantum mechanics

Lecture 1

fcichos.github.io/exp3

^ Experimental Physics 3
Search docs
CoURSE INFORMATION:
This Website
Course Schedule
Assignments
Exams
Resources
Instructors
COURSE INTRODUCTION:
Overview
Introduction to Jupyter
Notebook editor
Entering code
Entering Markdown
LECTURE 1:
Lecture Contents

Experimental Physics 3

Welcome to the Experimental Physik 3 Course!

In this Experimental Physics 3 course, we will dive into to basic experiments and mathematical descriptions related to light propagation, electromagnetic waves and its material counter part of matter waves. In particular we will have a look at

- Geometrical Optics
- Wave Optics
- Electromagnetic Wave
- Matter waves and Quantum Mechanics

The fields of optics and quantum mechanics are nowadays very active research areas with a dynamically devloping areas of optical technolgies, high resolution microscopy and quantum information. All this builds on the fundations that are tackled in this course

Course Information:

1. Geometrical Optics

1. Geometrical Optics

Geometrical optics is an approximate description of light propagation in the limit of infinitely small wavelength, where all wave phenomena like diffraction can be neglected.

Geometrical Optics - Assumptions

- light rays emerge from a light source
- light rays are detected by a detector
- light matter interaction is characterized by a refractive index n
- rays may be reflected and refracted at interfaces between media
- light propagates in straight line path (rays) in a homogeneous medium
- light bends to a curved path in inhomogeneous media $n(\vec{r})$
- the speed of light is $c=c_{0} / n$

1.1 Reflection

- light is reflected at interfaces

$$
\theta_{1}=\theta_{3}
$$

Fermat's principle

Light takes the path of shortest time.
A ray going in a certain particular path has the property that if we make a small change in the ray in any manner whatever, say in the location at which it comes to the mirror, or the shape of the curve, or anything, there will be no firstorder change in the time; there will be only a second-order change in the time

$$
\delta \int_{A}^{C} n(\vec{r}) d s=0
$$

Funny Fact

https://journals.plos.org/plosone/article?id=10.1371/journal.pone. 0059739

OPEN 〇 ACCESS Freely available online
PLOS ONE
Fermat's Principle of Least Time Predicts Refraction of Ant Trails at Substrate Borders
Jan Oettler ${ }^{1 * 9}$, Volker S. Schmid ${ }^{19}$, Niko Zankl ${ }^{1}$, Olivier Rey ${ }^{2}$, Andreas Dress ${ }^{3,4}$, Jürgen Heinze ${ }^{1}$
 cedex, France, 3 Chinese Academy of Sciences - Max-Planck-Gesellschaft Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, Chinaa
4 infinity 3 CmbH,

1.2 Refraction

- light is refracted at interfaces

Snell's law $\quad n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right)$

1.2 Refraction - Total Internal Reflection (TIR)

1.2 Refraction - Applications of TIR

glass fiber for optical communications

θ_{a} acceptance angle
numerical aperture: $\quad N A=\sin \theta_{a}=\sqrt{\left(n_{1}^{2}-n_{2}^{2}\right)}$
typical value: $\quad N A \approx 0.2 \quad n_{1}=1.475, n_{2}=1.46$

1.3 Mirrors, Prisms, Lenses - Mirrors

Plane Mirrors

1.3 Mirrors, Prisms, Lenses - Mirrors

Concave (spherical) Mirrors

Focal distance

$$
\begin{aligned}
& f=O F=R(1-1 /(2 \cos (\alpha)) \\
& f=R\left(1-\frac{R}{2 \sqrt{R^{2}-h^{2}}}\right)
\end{aligned}
$$

Imaging equation

$$
\frac{1}{g}+\frac{1}{b} \approx \frac{2}{R} \approx \frac{1}{f}
$$

