Experimental Physics 3 - Em-Waves,Optics, Quantum mechanics

Lecture 5

Magnifying Glass

In focus

$$
V_{M}=\frac{\tan (\epsilon)}{\tan \left(\epsilon_{0}\right)}=\frac{s_{0}}{f}
$$

within focal range

$$
V_{M}=\frac{\tan (\epsilon)}{\tan \left(\epsilon_{0}\right)}=\frac{s_{0}}{a}=\frac{s_{0}}{f}+1
$$

Visual Angle

Microscope

objective lens
eye piece

$$
V=\frac{\left(d-f_{2}\right) s_{0}}{f_{1} f_{2}}
$$

Objective Lens - Eye piece

no immersion medium

immersion medium

Infinity Optics

Deciphering Microscope Objective Specifications

Wiedfield Microscopy

Optical microscopy techniques - just a glimpse

Ptychographic Imaging

Imaging large field of view with high Resolution with LED light sources.

Structured Illumination Microscopy

Just for the beauty

[1] T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S G. Megason, T. Kirchhausen, and E. Betzig, Science 360, eaaq 1392 (2018).

Confocal Microscope

Astronomical Telescope (Kepler Telescope)

$$
V=\frac{f_{1}}{f_{2}}
$$

Terrestrial Telescope (Galilei Telescope)

upright image

Reflecting Telescope

Hubble Space Telescope

Cassegrain telescope

