Experimental Physics 3 - Em-Waves,Optics, Quantum mechanics

Lecture 19

Experiment Fresnel Equations

Experiment Fresnel Equations

Fresnel Equations - Reflection

Air to Glass

Brewster Angle

Fresnel Equations - Reflection

Air to Glass

Fresnel Equations - Reflection

Glass to Air

Fresnel Equations - Reflection

Glass to Air

$$
R_{i}=\left|r_{i}\right|^{2}
$$

Fresnel Equations - Transmission

Air to Glass

$$
T_{i}=\frac{n_{2} \cos \left(\theta_{T}\right)}{n 1 \cos \left(\theta_{I}\right)}\left|t_{i}\right|^{2}
$$

Fresnel Equation - Transmission

Fresnel Equation - Transmission

Glass to Air

$$
T_{i}=\frac{n_{2} \cos \left(\theta_{T}\right)}{n 1 \cos \left(\theta_{I}\right)}\left|t_{i}\right|^{2}
$$

$$
\vec{E}_{\text {trans }}=\vec{E}_{T} e^{i\left(\omega t-n_{1} k_{0} \sin \left(\theta_{T}\right) z\right.} e^{-n_{2} k_{0} \alpha x}
$$

Total Internal Reflection

Evanescent wave

TIRF/NSOM Microscopy

Optomechanical Cooling and Sensing

Anisotropic Materials

optical anisotropy

optical anisotropy is related to crystal
structure

Symmetry	Lattice	$\overline{\bar{\chi}}$	Indices of Refraction	diamond
Isotropic	Cubic	$\left(\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right)$	$n=\sqrt{1+a}$	
Uniaxial	Triagonel Tetragonel Hexagonal	$\left(\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right)$	$\begin{aligned} & n_{O}=\sqrt{1+a} \\ & n_{E}=\sqrt{1+b} \end{aligned}$	Calcit
Biaxial	Triclinic Monoclinic Orthorhombic	$\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$	$\begin{aligned} & n_{1}=\sqrt{1+a} \\ & n_{2}=\sqrt{1+b} \\ & n_{3}=\sqrt{1+c} \\ & \hline \end{aligned}$	MICA
	a	hexagonal		

Material structure - optical properties

random positions and random orientations

periodic lattice of atoms or molecules

random positions and aligned orientations

Liquid Crystal Display

Anisotropic Materials - Index Ellipsoid

$$
\mathbf{D}=\left[\begin{array}{ccc}
\epsilon_{11} & 0 & 0 \\
0 & \epsilon_{22} & 0 \\
0 & 0 & \epsilon_{33}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]
$$

Anisotropic Materials - k-Surfaces

Birefringence

Birefringence - Wave Retarder

Interface

Liquid Crystal Display

Phase Matching in Non-linear Optics

Polarization Optics

Light Paths Through Polarizing Prisms

