Experimental Physics 3 - Em-Waves, Optics, Quantum mechanics

Lecture 19

Prof. Dr. Frank Cichos WS 2020/21

Experiment Fresnel Equations

Experiment Fresnel Equations

Brewster Angle

Fresnel Equations - Transmission

Fresnel Equation - Transmission

Fresnel Equation - Transmission

$$ec{E}_{ ext{trans}} = ec{E}_T e^{i(\omega t - n_1 k_0 \sin(heta_I) z)} e^{-n_2 k_0 lpha x}$$

Total Internal Reflection

Evanescent wave

TIRF/NSOM Microscopy

Optomechanical Cooling and Sensing

Anisotropic Materials

a

optical anisotropy

optical anisotropy is related to crystal structure

Symmetry	Lattice	$=$ χ	Indices of Refraction	
Isotropic	Cubic	$ \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} $	$n = \sqrt{1+a}$	diamond
Uniaxial	Triagonel Tetragonel Hexagonal	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$n_O = \sqrt{1+a}$ $n_E = \sqrt{1+b}$	Calcit
Biaxial	Triclinic Monoclinic Orthorhombic	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$n_1 = \sqrt{1+a}$ $n_2 = \sqrt{1+b}$ $n_3 = \sqrt{1+c}$	MICA

triclinic

Material structure - optical properties

Liquid Crystal Display

Anisotropic Materials - Index Ellipsoid

$$\mathbf{D} = \begin{bmatrix} \epsilon_{11} & 0 & 0\\ 0 & \epsilon_{22} & 0\\ 0 & 0 & \epsilon_{33} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}$$

(c) Demtröder: Electrodynamics and Optics

Anisotropic Materials - k-Surfaces

Birefringence

Birefringence - Wave Retarder

Liquid Crystal Display

Phase Matching in Non-linear Optics

Polarization Optics

Light Paths Through Polarizing Prisms