Overview¶
The Experimental Physics 3 course is introducing you to topics related to electromagnetic waves, optics and matter waves. We will cover experiments, some basic mathematical description and also interactive visualizations in our lecture. Below you find the planned contents of our course. Besides the physical contents, this website also contains a number of additional interactive features. These features are provided by so-called Jupyter notebooks and the contained Python code. If you want to know more about those possibilities, have a look at the sections on Jupyter notebooks in the Course Introduction.
Lecture Contents¶
- Ray Optics
- 1.1.Reflection1.2.Refraction, Total internal reflection, Rainbow challenge1.3.Mirrors, Lenses, Prisms1.4.Optical instruments1.4.1.Telescope1.4.2.Microscope1.5.Dispersion1.6.Imaging errors1.6.1.Spherical aberration1.6.2.Coma1.6.3.Astigmatism1.6.4.Chromatic aberration
- Wave Optics
- 2.1.Wave equation2.1.1.Plane waves2.1.2.Spherical waves2.2.Interference2.2.1.Coherence2.2.2.Interferometers2.3.Huygens principle2.3.1.Diffraction2.3.2.Single and double slit2.3.3.Diffraction grating2.3.4.Optical resolution
- Electromagnetic Waves
- 3.1.Electromagnetic spectrum3.2.Plane and spherical electromagnetic waves3.3.Energy transport and Poynting vector3.4.Polarization3.5.Reflection and transmission3.6.Total internal reflection3.7.Fresnel formulas3.8.Hertz dipole
- Foundations of Quantum Physics
- 4.1.Particle properties of light4.1.1.Photo effect4.1.2.Black body radiation4.1.3.Photon gas4.1.4.Planck’s radiation law4.2.Structure of matter4.2.1.Thomson model of the atom4.2.2.Rutherford scattering4.2.3.Rutherford and Bohr atom model4.3.Matter waves4.3.1.Heisenberg uncertainty relation4.3.2.Wave function4.3.3.Probability interpretation of the wave function4.3.4.Schrödinger equation4.3.5.Quantum states4.3.6.Potential box4.3.7.Harmonic oscillator4.3.8.Tunneling4.3.9.Correspondence principle